Minimización de Funciones Lógicas. El algoritmo de Quine–McClusky explicado y mejorado. El documento completo.
Durante los últimos días he publicado una serie de cinco artículos sobre el problema de la minimización de funciones lógicas, y en concreto sobre el algoritmo de Quine-McClusky, reputado en la profesión como el procedimiento de referencia para resolver este tipo de problemas: dada una expresión lógica, encontrar la expresión equivalente, o sea, con su misma tabla de verdad, que sea mínima, es decir, que contenga el menor número posible de variables individuales.
Tratándose de un algoritmo publicado en 1956, ha sido estudiado y utilizado profusamente durante sus casi setenta años de vida. Y sin embargo, todavía es posible encontrar formas de mejorar este algoritmo para reducir los recursos informáticos que requiere o simplemente para que efectivamente encuentre la función lógica mínima equivalente a una dada, lo que no siempre hace.
En esos artículos fui paulatinamente describiendo el algoritmo en su diferentes pasos, alguno de ellos nuevo en el sentido de que no he encontrado referencias sobre ellos en la Red, otros idénticos a lo expresado en la literatura, y otros, por fin, con modificaciones sobre lo expresado en dicha literatura sobre el algoritmo.
En este artículo final de la serie presento un único documento con el compendio de los cinco artículos; he retocado algunas frases para eliminar el estilo derivado de estar publicados en una serie de artículos en la web, pero el documento sigue las mismas pautas y el mismo orden de exposición seguido en los artículos de la serie.
He aquí el documento completo.
Espero que os sirva.
Disfrutad de la vida mientras podáis.